Math 2270, Final

December 13, 2021

PRINT YOUR NAME:

Question	Points	Score
1	20	
2	8	
3	10	
4	8	
5	8	
6	10	
7	10	
8	10	
9	8	
10	8	
Total:	100	

- No advanced calculators or cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated.
- You have 120 minutes and the exam is 100 points.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- Do the best you can!

1. (20 points)
2. Is the quadratic form $Q\left(x_{1}, x_{2}\right)$ corresponding to the matrix A positive definite, negative definite, or indefinite?

$$
A=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right]
$$

i) Positive definite
ii) Negative definite
iii) Indefinite
2. The determinant of a matrix B is $\operatorname{det} B=-13$. Is it invertible?
i) Yes
ii) No
iii) Not enough info
3. Let A be a 4×4 square matrix. Does it have a complex eigenvalue $\lambda=a+b i$? (b can be 0 .)
i) Yes
ii) No
iii) Not enough info
4. What is the angle θ between the two vectors \vec{u} and \vec{v} ?

$$
\vec{u}=\left[\begin{array}{c}
\sqrt{6}+\sqrt{2} \\
-2 \sqrt{2} \\
\sqrt{6}-\sqrt{2}
\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

$$
\theta=
$$

\qquad
5. Is the linear transformation corresponding to the matrix A injective?

$$
A=\left[\begin{array}{ccc}
-133 & 211 & 186 \\
190 & 210 & 1117
\end{array}\right]
$$

i) Yes
ii) No
iii) Not enough info
6. The columns of a matrix A are linearly independent. Is A surjective?
i) Yes
ii) No
iii) Not enough info
7. Find the projection $\operatorname{pr}_{\vec{v}} \vec{u}$ of \vec{u} onto \vec{v} :

$$
\vec{u}=\left[\begin{array}{c}
-14 \\
3 \\
5
\end{array}\right], \quad \vec{v}=\left[\begin{array}{c}
-1 \\
-2 \\
2
\end{array}\right]
$$

$$
\operatorname{pr}_{\vec{v}} \vec{u}=[\square]
$$

8. Are these vectors orthonormal, orthogonal but not orthonormal, or neither?

$$
\left\{\left[\begin{array}{c}
2 / \sqrt{5} \\
0 \\
1 / \sqrt{5}
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-1 / \sqrt{5} \\
0 \\
2 / \sqrt{5}
\end{array}\right]\right\}
$$

i) Orthonormal
ii) Just Orthogonal
iii) Neither
9. Let A be a symmetric 6×6 matrix. Does there exist a basis for \mathbb{R}^{6} consisting only of eigenvectors for A ?
i) Yes
ii) No
iii) Not enough info
10. The characteristic polynomial $p_{A}(\lambda)$ of a 4×4 matrix A is

$$
p_{A}(\lambda)=(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4) .
$$

Is A diagonalizable?
i) Yes
ii) No
iii) Not enough info
2. (8 points) Solve the system of linear equations.

$$
\begin{aligned}
3 x_{1}-x_{2}+x_{3} & =-13 \\
x_{1}+x_{3} & =-3 \\
-3 x_{1}-3 x_{2}-8 x_{3} & =-5
\end{aligned}
$$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=[\square]
$$

3. (10 points) Find a basis for the null space $\operatorname{Nul} A$ and column space $\operatorname{Col} A$ of the matrix A. What are the dimensions of each space?

$$
\left[\begin{array}{cccc}
2 & 2 & 0 & -2 \\
10 & 9 & 2 & -7 \\
3 & 3 & 0 & -3
\end{array}\right]
$$

Nul A basis: \qquad $\operatorname{dim} \operatorname{Nul} A:$ \qquad

Column Space $\operatorname{Col} A$:
$\operatorname{Col} A$ basis: $\operatorname{dim} \operatorname{Col} A:$
4. (8 points) Find the determinant of the matrix A. Is it invertible?

$$
A=\left[\begin{array}{llll}
0 & 0 & 2 & 1 \\
4 & 1 & 1 & 0 \\
3 & 1 & 4 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

5. (8 points) Find the inverse A^{-1} of the matrix A :

$$
A=\left[\begin{array}{lll}
4 & 3 & 0 \\
1 & 1 & 0 \\
1 & 4 & 1
\end{array}\right]
$$

$$
A^{-1}=\left[\begin{array}{lll}
\square & \square & \square \\
\square & \square & \square
\end{array}\right]
$$

6. (10 points) Diagonalize the matrix A : Write $A=P D P^{-1}$ for a diagonal matrix D.

$$
\left[\begin{array}{cc}
4 & -1 \\
-3 & 2
\end{array}\right]
$$

$P=\left[\begin{array}{ll}\square & \square\end{array}\right] D=\left[\begin{array}{ll}\square & \square\end{array}\right] P^{-1}=\left[\begin{array}{ll}\square & \square\end{array}\right]$
7. (10 points) Use the Gram-Schmidt process to replace the given basis by an orthogonal basis. (It does not have to be orthonormal.)

$$
u_{1}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
0 \\
18 \\
6
\end{array}\right]
$$

Orthogonal basis:
8. (10 points) Determine if the vector \vec{b} is in the column space $\operatorname{Col} A$ of the matrix A (circle Yes or No below). If so, find a solution to $A \vec{x}=\vec{b}$. If not, find a least squares solution $A \widetilde{x}=\widetilde{b}$.

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
1 & 0 \\
2 & -1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
0 \\
4 \\
-1
\end{array}\right]
$$

Is \vec{b} in $\operatorname{Col} A$?
i) Yes
ii) No

9. (8 points) (a) Find the matrix A such that the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=-4 x_{1}^{2}+11 x_{2}^{2}-20 x_{1} x_{2}
$$

comes from the matrix: $Q(\vec{x})=\vec{x}^{T} A \vec{x}$.

(b) Change the basis of \vec{x} so that $Q\left(x_{1}, x_{2}\right)$ is diagonal, i.e., has no cross terms $x_{1} x_{2}$.

New Q : \qquad
10. (8 points) Consider two bases

$$
\mathcal{C}=\left\{\left[\begin{array}{l}
-6 \\
-2
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\} \quad \mathcal{B}=\left\{\left[\begin{array}{c}
-12 \\
-4
\end{array}\right],\left[\begin{array}{c}
-15 \\
-6
\end{array}\right]\right\}
$$

for \mathbb{R}^{2}.
Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ that sends a vector in \mathcal{B} coordinates $[\vec{x}]_{\mathcal{B}}$ to the same vector represented in \mathcal{C} coordinates $[\vec{x}]_{\mathcal{C}}$.

